sparsesurv.baseline_hazard_estimation module
Summary
Functions:
Accelerated Failure Time baseline hazard estimator function. |
|
Extended Hazards baseline hazard estimator function. |
|
Breslow approximation of the hazard function with breslow tie-correction. |
|
Breslow approximation of the hazard function with efron tie-correction. |
|
Computes cumulative hazard for the accelerated failure time model. |
|
Computes cumulative hazard for the extended hazards model. |
Reference
- breslow_estimator_breslow(time, event, eta)[source]
Breslow approximation of the hazard function with breslow tie-correction.
- Parameters:
time (npt.NDArray[np.float64]) – Event times.
event (npt.NDArray[np.float64]) – Event states.
eta (npt.NDArray[np.float64]) – Linear predictor of the samples.
- Returns:
Tuple of unique and sorted time points, and the corresponding cumulative hazard at that point as arrays.
- Return type:
Tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]
- breslow_estimator_efron(time, event, eta)[source]
Breslow approximation of the hazard function with efron tie-correction.
- Parameters:
time (npt.NDArray[np.float64]) – Event times.
event (npt.NDArray[np.float64]) – Event states.
eta (npt.NDArray[np.float64]) – Linear predictor of the samples.
- Returns:
Tuple of unique and sorted time points, and the corresponding cumulative hazard at that point as arrays.
- Return type:
Tuple[npt.NDArray[np.float64], npt.NDArray[np.float64]]
- aft_baseline_hazard_estimator(time, time_train, event_train, eta_train)[source]
Accelerated Failure Time baseline hazard estimator function.
- Parameters:
time (npt.NDArray[np.float64]) – Event times.
time_train (npt.NDArray[np.float64]) – Event times of training samples.
event_train (npt.NDArray[np.float64]) – Event states of training samples.
eta_train (npt.NDArray[np.float64]) – Linear predictor of training samples.
- Returns:
Baseline hazard value.
- Return type:
- get_cumulative_hazard_function_aft(time_query, eta_query, time_train, event_train, eta_train)[source]
Computes cumulative hazard for the accelerated failure time model.
- Parameters:
npt.NDArray[np.float64] (eta_train) – Times at which cumulative hazard function estimation is desired.
npt.NDArray[np.float64] – Linear predictor of query samples.
npt.NDArray[np.float64] – Event times of training samples.
npt.NDArray[np.float64] – Event states of training samples.
npt.NDArray[np.float64] – Linear predictor of training samples.
- Returns:
Cumulative hazard at each unique and sorted time step.
- Return type:
pd.DataFrame
- baseline_hazard_estimator_eh(time, time_train, event_train, eta_train)[source]
Extended Hazards baseline hazard estimator function.
- Parameters:
time (npt.NDArray[np.float64]) – Event times.
time_train (npt.NDArray[np.float64]) – Event times of training samples.
event_train (npt.NDArray[np.float64]) – Event states of training samples.
eta_train (npt.NDArray[np.float64]) – Linear predictor of training samples.
- Returns:
Baseline hazard value.
- Return type:
- get_cumulative_hazard_function_eh(time_query, eta_query, time_train, event_train, eta_train)[source]
Computes cumulative hazard for the extended hazards model.
- Parameters:
npt.NDArray[np.float64] (eta_train) – Times at which cumulative hazard function estimation is desired.
npt.NDArray[np.float64] – Linear predictor of query samples.
npt.NDArray[np.float64] – Event times of training samples.
npt.NDArray[np.float64] – Event states of training samples.
npt.NDArray[np.float64] – Linear predictor of training samples.
- Returns:
Cumulative hazard at each unique and sorted time step.
- Return type:
pd.DataFrame