References

[Wissel2023]

David Wissel, Nikita Janakarajan, Daniel Rowson, Julius Schulte, Xintian Yuan, Valentina Boeva. “sparsesurv: Sparse survival models via knowledge distillation.” (2023, under review).

[Paul2008]

Paul, Debashis, et al. ““Preconditioning” for feature selection and regression in high-dimensional problems.” (2008): 1595-1618.

[Pavone2023]

Pavone, Federico, et al. “Using reference models in variable selection.” Computational Statistics 38.1 (2023): 349-371.

[Zeng2007]

Zeng, Donglin, and D. Y. Lin. “Efficient estimation for the accelerated failure time model.” Journal of the American Statistical Association 102.480 (2007): 1387-1396.

[Tseng2011]

Tseng, Yi-Kuan, and Ken-Ning Shu. “Efficient estimation for a semiparametric extended hazards model.” Communications in Statistics—Simulation and Computation® 40.2 (2011): 258-273.

[Fletcher2000]

Fletcher, Roger. Practical methods of optimization. John Wiley & Sons, 2000.

[Sheather1991]

Sheather, Simon J., and Michael C. Jones. “A reliable data‐based bandwidth selection method for kernel density estimation.” Journal of the Royal Statistical Society: Series B (Methodological) 53.3 (1991): 683-690.

[Zhong2021]

Zhong, Qixian, Jonas W. Mueller, and Jane-Ling Wang. “Deep extended hazard models for survival analysis.” Advances in Neural Information Processing Systems 34 (2021): 15111-15124.

[Weinstein2013]

John N Weinstein, Eric A Collisson, Gordon B Mills, Kenna R Shaw, Brad A Ozenberger, Kyle Ellrott, Ilya Shmulevich, Chris Sander, and Joshua M Stuart. The cancer genome atlas pan-cancer analysis project. Nature genetics, 45(10):1113–1120, 2013.

[Liu2018]

Jianfang Liu, Tara Lichtenberg, Katherine A Hoadley, Laila M Poisson, Alexander J Lazar, Andrew D Cherniack, Albert J Kovatich, Christopher C Benz, Douglas A Levine, Adrian V Lee, et al. An integrated tcga pan-cancer clinical data resource to drive high-quality survival outcome analytics. Cell, 173(2):400–416, 2018